New methods for accurate prediction of protein secondary structure.
نویسندگان
چکیده
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملPrediction of Secondary Structure of Citrus Viroids Reported from Southern Iran
Abstract Viroids are smallest, single-stranded, circular, highly structured plant pathogenic RNAs that do not code for any protein. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Members of the Pospiviroidae family adopt a rod-like secondary structure. In this study the most stable secondary structures of citrus viroid variants that reported from Fars province wer...
متن کاملPhysicochemical Position-Dependent Properties in the Protein Secondary Structures
Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...
متن کاملComputational methods for protein secondary structure prediction using multiple sequence alignments.
Efforts to use computers in predicting the secondary structure of proteins based only on primary structure information started over a quarter century ago [1-3]. Although the results were encouraging initially, the accuracy of the pioneering methods generally did not attain the level required for using predictions of secondary structures reliably in modelling the three-dimensional topology of pr...
متن کاملProtein secondary structure prediction.
The past year has seen a consolidation of protein secondary structure prediction methods. The advantages of prediction from an aligned family of proteins have been highlighted by several accurate predictions made 'blind', before any X-ray or NMR structure was known for the family. New techniques that apply machine learning and discriminant analysis show promise as alternatives to neural networks.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 35 3 شماره
صفحات -
تاریخ انتشار 1999